ESTIMAÇÃO DO COEFICIENTE DE ATIVIDADE DE UM SISTEMA BINÁRIO EM EQUÍLIBRIO LÍQUIDO-VAPOR UTILIZANDO O MÉTODO UNIFAC

José Cleiton Sousa dos SANTOS (1); Marylane de SOUSA02 (2); Darlane Wellen Freitas de OLIVEIRA03 (3)

(1) Universidade Federal do Ceará, Campus do Pici, 60455-760, Fortaleza- CE, e-mail: jscleiton@gmail.com
(2) Universidade Federal do Ceará, Campus do Pici, 60455-760, Fortaleza- CE, e-mail: marylane_s@yahoo.com.br>

(3) Universidade Federal do Ceará, Campus do Pici, 60455-760, Fortaleza- CE, e-mail: darlannefreitas@gmail.com

RESUMO

As misturas em equilíbrio líquido-vapor (ELV) possuem grande aplicabilidade na indústria, onde são utilizados modelos para correlacionar ou predizer o equilíbrio de fases e as propriedades termodinâmicas. O equilíbrio líquido-vapor do sistema binário de diisopropil éter (DIPE) e álcool n-propílico foram estudados a partir de dados, determinados a temperatura fixa de 333,15 K. A lei de Raoult é a mais simples equação tendo suas inadequações corrigidas por outros modelos, fazendo uso de um coeficiente de atividade (γ). Este trabalho teve como objetivo o cálculo do (γ) para o sistema binário. A análise gráfica dos dados mostrou que o desvio do método experimental (Margules) em relação à condição de idealidade de Raoult, apresentou um desvio positivo para o sistema. Os resultados obtidos mostraram que o método UNIFAC apresentou uma divergência de ± 2,16% para γ_1 e de ± 3,18% para γ_2 em relação ao método de Margules.

Palavras-chave: Equílibrio Líquido-Vapor; Método UNIFAC; Coeficiente de Atividade

1 INTRODUÇÃO

O estudo do equilíbrio líquido-vapor (ELV) é especialmente importante aos engenheiros químicos, principalmente no processo de análise e projeto de equipamentos de destilação. O equilíbrio é uma condição de estabilidade, na qual não ocorre variação das propriedades macroscópicas de um sistema com o tempo. Isso implica uma igualdade de todos os potenciais que podem causar mudanças (Smith et al, 2007).

Quando o líquido e o vapor coexistem, eles estão em Equilíbrio Líquido-Vapor (ELV). Geralmente a representação gráfica do ELV se faz em diagramas pressão (P, x, y) e (T, x, y) onde x e y designam a composição das fases líquida e gasosa em equilíbrio. A partir da lei de Raoult, verifica-se que numa solução ideal de dois líquidos voláteis, para uma dada temperatura, a pressão de equilíbrio varia linearmente com a composição da solução. Para o equilíbrio líquido-vapor (ELV) a equação que representa a Lei de Raoult é a mais simples utilizada. Em compostos polares podem-se observar as interações intermoleculares na fase líquida, portanto a Lei de Raoult não é aplicável, devido a essas interações. No entanto, devem-se considerar as hipóteses de que a Lei de Raoult somente é aplicada em moderadas pressões e para espécies quimicamente similares (Sandler, 1997). Realizou-se no presente trabalho um estudo comparativo do equilíbrio líquido-vapor (ELV) de uma mistura binária de diisopropil éter (DIPE) e álcool n-propílico pelo método UNIFAQ. O modelo UNIFAC é uma ferramenta poderosa para descrever o equilíbrio de fase, especialmente quando estendido para sistemas contendo grupos similares (Guangsheng, 2010).

No método UNIFAC, os coeficientes de atividade são dadas pela soma das duas contribuições, combinatorial e residual: a primeira parte representa a contribuição devido a diferenças no tamanho e na forma das moléculas na mistura, enquanto o segundo representa a efeitos da interação entre os pares do grupo na molécula (Santiago, 2010). A partir da fórmula estrutural do composto, são preditos valores de temperatura normal de ebulição, propriedades críticas, fator acêntrico, segundo coeficiente virial, pressão de vapor, coeficiente de atividade e volume molar de líquido que são as propriedades demandadas em cálculos de ponto de bolha e de orvalho, isotérmicos e isobáricos (Martinez, 1992). Os resultados obtidos no presente estudo aproximam-se dos dados de comparação para os métodos utilizados no artigo de referência (Hwang, 2008), comprovando a eficiência do modelo utilizado.

2 METODOLOGIA

2.1. Dados experimentais

Selecionaram-se dados experimentais de um sistema binário formado por Éter di-isopropílico (1) e Álcool npropílico (2), realizado a 333,15K, citado em (Hwang, 2008). A partir desses dados avaliou-se a precisão do método UNIFAC na estimação de coeficientes de atividade dessa mistura binária. Os dados experimentais são apresentados na Tabela 1.

P (KPa)	x_l	<i>x</i> ₂	γ_1	γ ₂
24,76	0,0252	0,9748	2,5637	1,0011
28,48	0,0494	0,9506	2,4030	1,0034
32,07	0,073	0,927	2,3422	1,0051
34,89	0,0968	0,9032	2,1939	1,0112
41,26	0,1454	0,8546	2,1101	1,0162
47,12	0,2022	0,7978	1,9505	1,0334
53,49	0,2707	0,7293	1,8144	1,0566
57,70	0,3365	0,6635	1,6540	1,1003
61,10	0,4007	0,5993	1,5242	1,1538
63,89	0,4629	0,5371	1,4186	1,2185
65,93	0,5241	0,4759	1,3196	1,3072
68,06	0,5834	0,4166	1,2511	1,3968
69,17	0,642	0,3580	1,1699	1,5534
70,41	0,6967	0,3033	1,1151	1,7112
71,67	0,7526	0,2474	1,0709	1,9022

Tabela 1. Dados experimentais para mistura binária de diisopropílico éter (1) e álcool n-propílico (2).

73,13	0,8062	0,1938	1,0462	2,0639
74,44	0,8576	0,1424	1,0276	2,2541
75,50	0,9003	0,0997	1,0169	2,4342
76,20	0,9354	0,0646	1,0079	2,6843
76,48	0,9504	0,0496	1,0057	2,7858
76,74	0,9674	0,0326	1,0025	3,0037
76,94	0,9832	0,0168	1,0007	3,2150

Para a utilização do método UNIFAC foram calculados os parâmetros a seguir, onde:

K - identifica cada subgrupo;

 R_k - refere-se ao volume relativo e Q_k à área superficial relativa que são propriedades dos subgrupos;

 r_i - refere-se ao volume molecular relativo e q_i à área molecular superficial relativa, são parâmetros de espécies puras e são usados para o cálculo de e_{ki} ;

 a_{mk} - são parâmetros de interação UNIFAC – ELV;

 τ_{ji} - são parâmetros de interação dependentes da temperatura;

 θ_k - são parâmetros de interação dependentes das frações molares;

 s_k - são parâmetros dependentes de $\tau_{ji} \in \theta_k$.

Os subgrupos envolvidos da mistura são indicados pelas fórmulas químicas: éter diisopropílico $(CH_3)_2CHOCH(CH_3)_2(1)$ e álcool n-propílico $(CH_3CH_2CH_2OH)(2)$.

A Tabela 2 a seguir mostra os subgrupos, os seus números de identificação k, os valores dos parâmetros R_k e Q_k e o número de cada subgrupo em cada molécula:

rustin							
	k	R_k	Q_k	$v_k^{(1)}$	$v_k^{(2)}$		
CH ₃	1	0,9011	0,848	4	1		
CH ₂	2	0,6744	0,540	0	2		
СН	3	0,4469	0,228	1	0		
OH	15	1,0000	1,200	0	1		
CH-O	27	0,6908	0,468	1	0		

Tabela 2: Valores dos parâmetros k.

Pela Equação 1 foram obtido os valores de $r_1 = 4,7421$ e $r_2 = 3,2499$.

$$r_l = \sum_k v_k^{(l)} R_k \tag{1}$$

Da mesma forma, pela Equação 2 podemos obter:

$$q_{i} = \sum_{k} v_{k}^{(l)} Q_{k}$$

$$q_{1} = 4,088 \quad e \quad q_{2} = 3,128$$
(2)

Os valores de r_i e q_i são propriedades moleculares, independentes da composição. A substituição dos valores conhecidos, calculados pela seguinte Equação 3, onde gera a Tabela 2 a seguir para e_{ki} :

$$e_{ki} = \frac{v_k^{(i)} Q_k}{q_i} \tag{3}$$

Tabela 3: Valores dos parâmetros e_{ki} :

e_{ki}		
Κ	<i>i</i> =1	<i>i</i> =2
1	0,8297	0,2711
2	0,0000	0,3453
3	0,0558	0,0000
15	0,0000	0,3836
27	0,1145	0,0000

x ₁	x ₂	θ_{I}	θ_2	θ_3	θ_{15}	θ_{27}
0,025	0,974	0,289	0,334	0,001	0,371	0,003
0,049	0,950	0,306	0,323	0,003	0,359	0,007
0,073	0,927	0,323	0,313	0,005	0,347	0,010

Os parâmetros a_{mk} de interação a seguir são retirados da Tabela H.2 (Smith et al, 2007).

$$\begin{aligned} a_{1,1} = a_{1,2} = a_{1,3} = a_{2,1} = a_{2,2} = a_{2,3} = a_{3,1} = a_{3,2} = a_{3,3} = a_{15,15} = a_{27,27} = 0 \text{ K} \\ a_{1,15} = a_{2,15} = a_{3,15} = 986,50 \text{ K} \\ a_{1,27} = a_{2,27} = a_{3,27} = 251,50 \text{ K} \\ a_{15,1} = a_{15,2} = a_{15,3} = 156,40 \text{ K} \\ a_{15,27} = 28,06 \text{ K} \\ a_{27,1} = a_{27,2} = a_{27,3} = 83,36 \text{ K} \\ a_{27,15} = 237,70 \text{ K} \end{aligned}$$

A substituição desses valores na Equação 4, com T = 333,15 K, fornece:

$$t_{mk} = exp \frac{-a_{mk}}{T} \tag{4}$$

$$\begin{aligned} \tau_{1,1} = \tau_{1,2} = \tau_{1,3} = \tau_{2,1} = \tau_{2,2} = \tau_{2,3} = \tau_{3,1} = \tau_{3,2} = \tau_{3,3} = \tau_{15,15} = \tau_{27,27} = 1 \\ \tau_{1,15} = \tau_{2,15} = \tau_{3,15} = 0.0518 \\ \tau_{1,27} = \tau_{2,27} = \tau_{3,27} = 0.4701 \\ \tau_{15,1} = \tau_{15,2} = \tau_{15,3} = 0.6253 \\ \tau_{15,27} = 0.9192 \\ \tau_{27,1} = \tau_{27,2} = \tau_{27,3} = 0.7786 \\ \tau_{27,15} = 0.4899 \end{aligned}$$

A utilização da Equação 5, leva aos valores de β_{ik} apresentados na Tabela 4 a seguir:

$$\beta_{lk} = \sum_{m} e_{ml} \tau_{mk} \quad (5)$$
Tabela 4: Valores dos parâmetros θ_{m}

Tabela 4: Valores dos parâmetros	B _{il}	k
----------------------------------	------------------------	---

βik	5				
Ι	<i>k</i> = <i>1</i>	k = 2	<i>k</i> = 3	<i>k</i> = 15	<i>k</i> = 27
1	0,9740	0,8855	0,9746	0,1019	0,5308
2	0,8563	0,8563	0,6726	0,4155	0,6423

A substituição desses resultados na Equação 6 fornece os valores mostrados na Tabela 5:

$$\theta_{k=\frac{\sum_{i} x_{i} q_{i} e_{ki}}{\sum_{i} x_{j} q_{j}}}$$
(6)

e pela Equação 7, foram obtidos os seguintes valores apresentados na Tabela 6:

$$s_k = \sum_m \theta_m \tau_{mk}$$
 (7)

Tabela 5. Valores dos parâmetros θ de acordo com as respectivas frações molares.

0,096	0,903	0,339	0,302	0,006	0,336	0,014
0,145	0,854	0,372	0,282	0,010	0,313	0,020
0,202	0,797	0,410	0,259	0,013	0,288	0,028
0,270	0,729	0,453	0,232	0,018	0,258	0,037
0,336	0,663	0,493	0,207	0,022	0,230	0,045
0,400	0,599	0,531	0,184	0,026	0,204	0,053
0,462	0,537	0,566	0,162	0,029	0,180	0,060
0,524	0,475	0,600	0,141	0,032	0,157	0,067
0,583	0,416	0,632	0,122	0,036	0,135	0,074
0,64	0,358	0,662	0,103	0,039	0,114	0,080
0,696	0,303	0,690	0,086	0,041	0,095	0,085
0,752	0,247	0,717	0,069	0,044	0,077	0,091
0,806	0,193	0,742	0,053	0,047	0,059	0,096
0,857	0,142	0,766	0,038	0,049	0,043	0,101
0,900	0,090	0,786	0,026	0,051	0,029	0,105
0,934	0,064	0,801	0,017	0,052	0,019	0,103
0,904	0,049	0,808	0,013	0,053	0,014	0,113
0,674	0,032	0,815	0,008	0,054	0,009	0,111
0983	0,018	0,822	0,004	0,055	0,004	0,113

Tabela 6. Valores dos parâmetros (s) de acordo com as respectivas frações molares.

x_l	<i>x</i> ₂	s ₁	<i>s</i> ₂	S ₃	<i>s</i> ₁₅	<i>s</i> ₂₇
0,0252	0,9748	0,860134	0,860134	0,860134	0,405282	0,638727
0,0494	0,9506	0,863794	0,863794	0,863794	0,395588	0,635277
0,073	0,927	0,867312	0,867312	0,867312	0,386269	0,631961
0,0968	0,9032	0,87081	0,87081	0,87081	0,377005	0,628664
0,1454	0,8546	0,8778	0,8778	0,8778	0,35849	0,622074
0,2022	0,7978	0,885721	0,885721	0,885721	0,337509	0,614607
0,2707	0,7293	0,894934	0,894934	0,894934	0,313105	0,605921
0,3365	0,6635	0,903454	0,903454	0,903454	0,290539	0,59789
0,4007	0,5993	0,911471	0,911471	0,911471	0,269304	0,590332
0,4629	0,5371	0,918975	0,918975	0,918975	0,249429	0,583258
0,5241	0,4759	0,926117	0,926117	0,926117	0,230512	0,576525
0,5834	0,4166	0,93282	0,93282	0,93282	0,212757	0,570206
0,642	0,358	0,939244	0,939244	0,939244	0,195742	0,56415
0,6967	0,3033	0,945069	0,945069	0,945069	0,180314	0,55866
0,7526	0,2474	0,950857	0,950857	0,950857	0,164983	0,553203
0,8062	0,1938	0,956257	0,956257	0,956257	0,150678	0,548112
0,8576	0,1424	0,961304	0,961304	0,961304	0,137311	0,543354
0,9003	0,0997	0,965402	0,965402	0,965402	0,126457	0,539491
0,9354	0,0646	0,968708	0,968708	0,968708	0,117701	0,536375
0,9504	0,0496	0,970104	0,970104	0,970104	0,114003	0,535059
0,9674	0,0326	0,971674	0,971674	0,971674	0,109845	0,533579
0,9832	0,0168	0,973122	0,973122	0,973122	0,106009	0,532214

Os parâmetros J e L foram calculados a partir das seguintes Equações 8 e 9, onde os valores obtidos são visualizados na Tabela 7:

$J_{i=\frac{r_i}{r_i}}$		L_{i}
^{•−} Σj ^r j*j	(8)	¯Σjqj×j

Tabela 7. Valores dos parâmetros J e L de acordo com as respectivas frações molares.

(9)

x_l	<i>x</i> ₂	J_{l}	J_2	L_l	L_2
0,025	0,974	1,44	0,181	1,296	0,186
0,049	0,950	1,42	0,182	1,287	0,187
0,073	0,927	1,41	0,183	1,278	0,188

0,096	0,903	1,39	0,184	1,269	0,189
0,145	0,854	1,36	0,187	1,251	0,192
0,202	0,797	1,33	0,190	1,230	0,194
0,270	0,729	1,29	0,194	1,206	0,198
0,336	0,663	1,26	0,197	1,184	0,201
0,400	0,599	1,23	0,201	1,163	0,205
0,462	0,537	1,20	0,205	1,144	0,208
0,524	0,475	1,17	0,209	1,125	0,212
0,583	0,416	1,15	0,212	1,108	0,215
0,642	0,350	1,12	0,216	1,091	0,219
0,696	0,303	1,10	0,220	1,076	0,222
0,752	0,247	1,08	0,224	1,061	0,226
0,806	0,193	1,06	0,228	1,047	0,230
0,857	0,142	1,04	0,232	1,034	0,233
0,900	0,099	1,03	0,236	1,023	0,237
0,935	0,064	1,02	0,239	1,015	0,2396
0,950	0,049	1,01	0,240	1,011	0,240
0,967	0,032	1,01	0,241	1,007	0,242
0,983	0,016	1,00	0,243	1,003	0,243

Em seguida foram calculados os valores de ln γ_i pelas Equações 10 e 11 abaixo, e indicados na Tabela 8. Onde:

$$ln_{\gamma_{i}}^{c} = 1 - J_{i} + lnJ_{i} - 5q_{i}(1 - \frac{J_{i}}{L_{i}} + ln\frac{J_{i}}{L_{i}})$$
(10)

é a combinação dos componentes.

$$ln\gamma_i^R = q_i \left[1 - \sum_k (\theta_k \frac{\beta_{ik}}{s_k} - e_{ki} \ln \frac{\beta_{ik}}{s_k})\right]_{,(11)}$$

representa as forças residuais.

Finalmente, a Equação 12 abaixo fornece $\gamma_1 e \gamma_2$, e seus valores são apresentados na Tabela 8 :

$$ln\gamma_i = ln_{\gamma_i}^{C} + ln\gamma_i^{R} \quad (12)$$

Tabela 8. Valores encontrados para y1 e y2 de acordo com as respectivas frações molares, pelo método UNIFAC.

x_l	<i>x</i> ₂	γ1	γ_2
0,0252	0,9748	2,589091	1,000624
0,0494	0,9506	2,477301	1,007966
0,073	0,927	2,388304	1,090202
0,0968	0,9032	2,33842	1,092513
0,1454	0,8546	2,157412	1,097431
0,2022	0,7978	1,995762	1,103589
0,2707	0,7293	1,822276	1,111772
0,3365	0,6635	1,676462	1,120662
0,4007	0,5993	1,547812	1,180641
0,4629	0,5371	1,427256	1,241964
0,5241	0,4759	1,334744	1,355259
0,5834	0,4166	1,346991	1,450931
0,642	0,358	1,287652	1,599169
0,6967	0,3033	1,148474	1,7721287
0,7526	0,2474	1,119869	1,892897
0,8062	0,1938	1,06091	2,081277
0,8576	0,1424	1,042474	2,331552

0,9003	0,0997	1,034638	2,588737
0,9354	0,0646	1,01724	2,851607
0,9504	0,0496	1,015431	2,994491
0,9674	0,0326	1,00611	3,027355
0,9832	0,0168	1,002444	3,173653

O desvio entre os valores de γ_1 e γ_2 foi calculado pela Equação 13 abaixo:

Erro Médio % =
$$\frac{\gamma_1^* - \gamma_1}{\gamma_1^*}$$
. 100 (13)

Onde:

 γ_1^* foi obtido pelo método de Margules (Hwang, 2008) e γ_1 pelo método UNIFAC.

3 RESULTADOS E DISCUSSÕES

Os dados experimentais de equilíbrio líquido e vapor da mistura binária de éter diisopropílico (DIPE) + álcool n-propílico foram obtidos a partir do artigo de Hwang et al. 2008 onde foram correlacionados com diferentes modelos. Com base nos resultados experimentais foi feita uma correlação a partir do método UNIFAC para comparar os resultados do artigo e comprovar os resultados experimentais fornecidos.

A Figura 1 mostra uma comparação entre os coeficientes de atividade obtidos pelo método UNIFAC e os coeficientes de atividade experimentais obtidos pelo método de Margules observaram-se uma proximidade entre os coeficientes indicando um pequeno desvio.

Comparando-se os γ_1 e γ_2 calculados por Margules e por UNIFAC verificou-se um erro médio de (2,16%) para γ_1 e de (3,18%) para γ_2 .

Na Figura 2 temos o gráfico de ,, com os dados calculados pelo método UNIFAC e por Margules, percebese que apresentou um perfil uniforme e bem aproximados, comprovando então que o método UNIFAC se aplica bem para o calculo do coeficiente de atividade.

Figura 1. Coeficiente de Atividades por UNIFAC e pelo método experimental (Margules) citado no artigo de referencia.

Figura 2. Gráfico ln y1, ln y2 versus X1

4 CONCLUSÃO

Através da análise realizada, comparando-se os e calculados por Margules e por UNIFAC, podemos afirmar que os coeficientes de atividade podem ser seguramente calculados pelos métodos utilizados, visto que os valores encontrados apresentam um erro médio de (2,16%) para e de (3,18%) para foram aproximados o que nos deixa satisfeitos.

Assim, o método UNIFAC pode ser aplicado para a estimação do coeficiente de atividade de sistemas binários em equilíbrio Líquido-Vapor.

REFERÊNCIAS

GUANGSHENG, L.; XINGCHU, G.; Y., LÜ. Phase Equilibrium Calculations in Mixtures Containing Caprolactam with a UNIFAC Model. Chinese Journal of Chemical Engineering, 18(2), 286-291, 2010.

HWANG I.C., PARK S.J., LEE S.Y., AHN H.S. Isothermal vapor-liquid equilibrium at 333.15K and excess molar volumes at 298.15K for the ternary system di-isopropyl ether + n-propyl alcohol + toluene and its binary subsystems, Fluid Phase Equilibria 103–108. 2008.

MARTINEZ, C.L.M. "Avaliação de métodos de contribuição de grupos para uso em calculos de equilibrio liquido-vapor", Tese de Mestrado, Faculdade de Engenharia Química, UNICAMP, 1992.

O. REDLICH, A.T. KISTER. Ind. Eng. Chem. 40, 345–348, 1948.

SANDLER S.I. Chemical and Engineering Thermodynamicas, John Wiley & Sons Inc., New York, 3° ed. 1999.

SANTIAGO, R.S.; SANTOS, G. R.; AZNARC, M. Liquid–liquid equilibrium in ternary ionic liquid systems by UNIFAC: New volume, surface area and interaction parameters. Part I. Fluid Phase Equilibria. 295, 93–97, 2010.

SMITH, J.M., VAN NESS, H.C., ABBOTT, M.M. Introdução à Termodinâmica da Engenharia Química, LTC, São Paulo, 7a edição, 2007.